Atmospheric formation of the NO3 radical from gas-phase reaction of HNO3 acid with the NH2 radical: proton-coupled electron-transfer versus hydrogen atom transfer mechanisms.
نویسندگان
چکیده
The gas-phase reaction of nitric acid with the amidogen radical under atmospheric conditions has been investigated using quantum mechanical (QCISD and CCSD(T)) and DFT (B3LYP, BH&HLYP, M05, M05-2X, and M06-2X) calculations with the 6-311+G(2df,2p), aug-cc-pVTZ, aug-cc-pVQZ and extrapolation to the CBS basis sets. The reaction begins with the barrierless formation of a hydrogen-bonded complex, which can undergo two different reaction pathways, in addition to the decomposition back to the reactants. The lowest energy barrier pathway involves a proton-coupled electron-transfer mechanism, whereas the highest energy barrier pathway takes place through a hydrogen atom transfer mechanism. The performance of the different DFT functionals in predicting both the geometries and relative energies of the stationary points investigated has been analyzed.
منابع مشابه
A Theoretical Study on the Structure-Radical Scavenging Activity of Some Hydroxyphenols
Antioxidants are made for the struggle and reconstruction of the damaged cells, because of their ability in destroying the free radicals. On account of their importance, a theoretical procedure was applied for the study of the molecular structure and radical scavenging activity of six hydroxyphenols which have been introduced as antioxidant compounds. All geometry structures were optimized by M...
متن کاملThe gas-phase reaction of methane sulfonic acid with the hydroxyl radical without and with water vapor.
The gas phase reaction between methane sulfonic acid (CH3SO3H; MSA) and the hydroxyl radical (HO), without and with a water molecule, was investigated with DFT-B3LYP and CCSD(T)-F12 methods. For the bare reaction we have found two reaction mechanisms, involving proton coupled electron transfer and hydrogen atom transfer processes that produce CH3SO3 and H2O. We also found a third reaction mecha...
متن کاملA Novel Initiator of [5-(benzyloxy)-4-oxo-4H-pyran-2-yl]methyl-2-bromo-2-methylpropanoateas in Atom Transfer Radical Polymerization of Styrene and Methyl Methacrylate
A novel nano-initiator containing kojic acid moiety, [5-(benzyloxy)-4-oxo-4H-pyran-2-yl)methyl-2-bromo-2-methylpropanoate was synthesized by the reaction of 5-(benzyloxy)-2-(hydroxymethyl)-4H-pyran-4-one with 2-bromoisobutyryl bromide in triethylamine and used as initiator in the atom transfer radical polymerization (ATRP) of styrene and methyl methacrylate in the presence of Cu(0)/CuCl2and N,N...
متن کاملComputational study of the intramolecular proton transfer between 6-hydroxypicolinic acid tautomeric forms and intermolecular hydrogen bonding in their dimers
This paper is a density functional theory (DFT) calculation of intramolecular proton transfer (IPT) in 6-hydroxypicolinic acid (6HPA, 6-hydroxypyridine-2-carboxylic acid) tautomeric forms. The transition state for the enol-to-keto transition is reported in the gas phase and in four different solvents. The planar and non-planar dimer forms of 6HPA keto and enol, respectively, were also studied i...
متن کاملActivator Generated Electron Transfer Combined Atom Transfer Radical Polymerization (AGET-ATRP) for Controlled Grafting Location of Glycidyl Methacrylate on Regenerated Cellulose Ultrafiltration Membranes
This investigation indicates the ability to selectively graft glycidyl methacrylate (GMA) only from the external surface of regenerated cellulose (RC) ultrafiltration (UF) membranes using activator generated electron transfer (AGET) atom transfer radical polymerization (ATRP). This controlled polymerization resulted in epoxy functionalized polymer brush ends. Further reaction of the terminal ep...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 16 36 شماره
صفحات -
تاریخ انتشار 2014